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Abstract This paper illustrates an informatic technique for inferring and quantifying the dynamic role of
a single intrinsic current in a mechanism of neural bursting activity. We analyze the patterns of the most
dominant currents in a model of half-center oscillation in the leech heartbeat central pattern generator. We
find that the patterns of dominance change substantially over a cycle, allowing different local reductions to be
applied to the model. The result is a hybrid dynamical systems model, which is a piecewise representation of
the mechanism combining multiple vector fields and discrete state changes. The simulation of such a model
tests explicit hypotheses about the mechanism, and is a novel way to retain both mathematical clarity and
scientific detail in answering mechanistic questions about a complex model. Several insights into the central
mechanism of “escape-release” in the model are elucidated by this analysis and compared to previous studies.
The broader application and extension of this technique is also discussed.

Keywords Dominant scale analysis · Hybrid dynamical systems reduction · Bursting dynamics · Model
inference · Neuroinformatics · Central pattern generation

1 Introduction

Biophysical models of neural bursting activity in small circuits known as central pattern generators (CPGs)
are commonly used to hypothesize rhythmogenic mechanisms behind locomotor or autonomic control [7,12,
16]. We will study one aspect of an existing model of the leech heartbeat elemental half-center oscillator
(HCO), which is part of the heartbeat CPG circuit consisting of two reciprocally-coupled neurons that burst
alternately [8,14].

Models of small neural circuits are already sufficiently high dimensional and nonlinear that they present
great challenges to existing mathematical analysis tools, and typically the functional understanding of the
circuits involves reductions to simpler models of some kind (e.g., see [10]). As models become more so-
phisticated there is an increasing demand for tools that aid in the development and clear understanding of
a model’s function. Simulation capabilities for large, detailed models are currently far in advance of our
analytical methods for deeply understanding their function [15,17]. Our primary aim here is to promote a
formalized, hypothesis-driven modeling technique that may be able to redress the balance. In essence, this
works by exploring parsimonious, abstracted descriptions of a mechanism as a form of “reverse engineering”
of the full-dimensional dynamics.
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We apply a “dominant scale” analysis of a central mechanism behind the heartbeat CPG oscillations [4].
This analysis decomposes a single, high-dimensional vector field to a piecewise low-dimensional reduction
known as a “hybrid dynamical system” [26]. In such a system, smooth vector fields governing the dynamics
of the system in different regimes are switched at discrete times indicated by zero-crossing transition events,
at which point a discrete mapping may be applied to the system’s state before initializing the next vector field.
In contrast to making globally valid assumptions about the dynamics in order to reduce a complex model to
a single reduced model, a dominant scale analysis facilitates multiple, local reductions. These are typically
of lower order than a single, global reduction, and yet can also capture more details of the dynamics [5].
This approach dissects functional relationships between parameters, variables, and model behaviors at a finer
granularity than is possible with traditional model manipulations.

As with any form of reverse engineering, the user must provide some initial assumptions and hypotheses
about the mechanisms based on initial observations of the system [1]. This work does not focus on how
a user can generate such information in a purely objective or optimal fashion, and mostly concentrates on
the technique to synthesize mechanistic hypotheses into hybrid dynamical models in order to evaluate them.
Indeed, iteration is a central aspect of a reverse engineering methodology, which should validate or falsify the
initial hypotheses and lead to a more refined and robust description that can be tested further. The proposed
methodology is not intended as a standalone replacement of all subjective analytical steps with objective
ones. Instead, it attempts to assist a human user in performing a logical, and sometimes qualitative, analysis
of complex dynamics, with greater confidence and resolution.

We will restrict ourselves to a simple case study involving a single intrinsic current of the leech heartbeat
CPG model, namely the hyperpolarization-activated current Ih. We do this for the purposes of exposition,
despite the presence of several functionally relevant currents to explore in this CPG. Nonetheless, we will
uncover some novel insights into the role of this current in this CPG as well as verify previously established
insights by our method. Motivated by some broad numerical observations, initial mechanistic hypotheses are
presented in Section 4, but their precise choices are not critical to this work. First of all, the iterative nature of
the methodology is such that bad choices should rapidly become apparent during testing. There is naturally
more ambiguity in the other choices. However, a key aspect of the methodology is use of concrete means to
evaluate a reduced model (“metrics”) that are suited to the resolution of investigation. On further iteration
of the reverse engineering process, more subtle questions may be posed, for which both the metrics and the
reduced model decomposition can be refined accordingly. We will suggest future directions of this kind based
on the initial findings for this case study demonstration without pursuing them here.

1.1 Leech heartbeat case study

Previous studies of this HCO model and electrophysiological studies of the leech heartbeat have addressed
fundamental questions about the mechanism of bursting [8,14,18–20,24,25]. Regarding Ih specifically, these
questions can be summarized in terms of roles:

R1: What role does Ih have in the existence of a stable HCO rhythm?
R2: What role does Ih have in the modulation of the rhythm?

To these we add two questions, which investigate Ih more thoroughly:

R3: What role does Ih have in the robustness of the rhythm?
R4: What role do the details of activation / deactivation dynamics of Ih have in the performance of the rhythm?

The primary manipulation of Ih in previous modeling studies was to adjust its maximum conductance ḡh,
including setting it to zero to remove the effect of the current altogether. In conjunction with manipulations
of other currents, this approach has facilitated natural language descriptions of the mechanistic role of Ih. The
maximal conductance is a physiologically relevant parameter to vary, but this work dissects the dynamics in a
different way. We keep ḡh at its canonical value from Hill et al. [14], and infer from the behavior of the model
that there are different “regimes” during one oscillation of the HCO in which different currents dominate.
From this we hypothesize different roles for Ih in each regime, and explore the replacement of Ih in one cell of
the HCO with a simple but functionally equivalent behavior for each regime. We will reduce only one neuron
of the coupled pair, in a similar fashion to the neural-silicon circuit of Sorensen et al. [24]. The purpose of
this is to use the unreduced neuron as a reference, so that the quality of a reduction in the other neuron can be
measured by the degree of symmetry preservation in the coupled system.
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Fig. 1 The half-center oscillator model for the leech heartbeat central pattern generator, showing the two forms of reciprocal
inhibitory synaptic coupling present in the circuit (“graded” and “spike-mediated”), and the intrinsic current of focus for the
analysis: the hyperpolarization activated current Ih. On the left is the full 19-dimensional model MF . On the right, the reduced
“hybrid dynamical systems” model MR utilizes a piecewise constant reduced form for the activation mh in Ih, applied only to
neuron 1.

Functional criteria on the behavior of the HCO model are required to characterize the role of Ih in the
CPG rhythm. We will use five functional metrics: cycle period, relative cycle phase between the two cells
(“phase symmetry”), duty cycle, inter-spike interval (ISI), and phase response properties of the circuit to weak
perturbations. Previous modeling studies of this model have not considered the phase response properties in
detail. The metrics will be investigated over a range of maximal synaptic conductances ḡSynS for the spike-
mediated coupling, which is a physiologically important parameter used in previous computational studies of
this circuit [20]. We will then make a comparison of these metrics between the original HCO model and the
reduced form.

We briefly review the HCO model in Section 2. In Section 3 we make broad and informal observations in
relation to previous work, based on measurements of time scales and the comparison of the current terms in
the model that control the motion of the membrane potentials. From these observations, explicit hypotheses
are developed into a hybrid dynamical model in Section 4, which are tested in Section 5 and discussed in
Section 6.

2 The HCO model

Each interneuron in the leech heartbeat HCO model consists of a single somatic compartment with membrane
potential V , whose rate of change is determined by a current balance equation made up of several intrinsic ion
channel currents and two forms of inhibitory synaptic input current originating from the other neuron. It is
illustrated in Figure 1. The existing, “full” version of the model will be denoted MF and has been developed
over several studies. The version of the equations and parameters used here is described fully in [8], based on
the model of Hill et al. [14]. The form of the ordinary differential equation (ODE) for V is

CV̇ =−∑ Iionic− Iapplied− Isyn, (1)

for a membrane capacitance C = 0.5nF, a sum of ionic currents and an applied current (which is zero unless
otherwise stated). Throughout this paper, the units of V are volts, those of current are pA, and those of
conductance are nS. In using the Hodgkin-Huxley formalism, each intrinsic ionic current takes the form
I = ḡmphq (V −E) for channel reversal potential E, maximum conductance ḡ, activation gating variable m
and, if present, inactivation gating variable h, for some non-negative integer powers p and q. The kinetics
of each gating variable are governed by a first-order differential equation. The model contains a passive leak
current IL = ḡL (V −EL) and 8 active ionic currents: a fast Na+ current (with activation mNa and inactivation
hNa), three types of K+ current (mK1, hK1; mK2, hK2; and mKA), a persistent Na+ current (mP), a hyper-
polarization-activated current (mh), and a rapidly and slowly inactivating low-threshold Ca2+ current (mCaF,
hCaF; mCaS, hCaS).

Because we focus on Ih, we detail its definition further: Ih = ḡhm2
h (V −Eh), where ḡh = 4.0nS and Eh =

−0.021V. The activation is governed by ṁh = (mh,∞−mh)/τh. The time scale and steady state activation
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functions are given by

τh(V ) = 0.7+
1.7

1+ e−100(V+0.073) and mh,∞(V ) =
1

1+2e180(V+0.047)+ e500(V+0.047) .

The cells are reciprocally inhibited by both slow-acting “graded” (G) and fast-acting “spike-mediated” (S)
forms of synaptic inhibition [18]. The synaptic current models use a total of 5 variables but ISynG and ISynS
appear in Eq. (1) according to

ISynG = ḡSynG
P3

Co+P3

(
V −ESyn

)
, ISynS = ḡSynSMY

(
V −ESyn

)
,

where P, M, and Y are three of the synaptic variables, ESyn =−0.0625V, ḡSynG = 30nS, ḡSynS = 150nS, and
Co = 1×10−32 is constant. With the 5 synaptic variables there are a total of 19 dynamic variables per neuron
in model MF . The remaining details of the currents are not important to the analysis undertaken here.

3 Preparatory observations

Busting activity in this CPG is most fundamentally split into the “active” or “bursting” state (hereon denoted
B) in which the cell generates action potential spikes, and the “recovery” or “inhibited” state (hereon denoted
I). Previous work has identified that Ih is important for an “escape”-based mechanism underlying the creation
of a rhythmic cycle in the HCO, and for determining its period [14]. Briefly, the mechanism works as follows.
A neuron inhibited by its partner in the HCO is in the inhibited state I. Eventually, it pro-actively overcomes
the inhibition, spikes again itself, and thereby stops its partner from continuing its burst of spikes. Ih acts to
depolarize the neuron from I into B due to Eh being more depolarized than the threshold for action potentials.
Ih appears to play a major role in balancing the hyperpolarizing effect of IL (for which EL = −0.0635) and
ultimately overcomes the effect of ISynS caused by action potential spikes arriving from the neuron in B. As
noted in previous studies, the situation is more complex, and there are aspects present of a “release”-based
mechanism, primarily involving the decay of ICaS.

Through analysis of MF we now focus on which currents dominate the activity of the membrane poten-
tial V1 of neuron 1 during I. The dynamics of the membrane potentials lie within a high conductance regime
because τV =C/∑i ḡim

pi
i hqi

i , the effective time constant for the membrane, stays small throughout each cycle
[22]. We will not focus on the role of Ih at the resolution of dynamics within single spikes, and at slower
time scales in the cycle τV remains within a range of 0.02–0.03s on average, over both B and I. It is therefore
appropriate to this study to use the type of dominant scale analysis performed on bursting cells in a crus-
tacean stomatogastric system by comparing the changing magnitudes of the currents over a cycle [5]. (In a
purely high-conductance regime this provides equivalent information to studying the “influence” sensitivity
quantities also considered in [4,5].)

Over one cycle, mh(t) rises and falls with kinetics at comparable time scales, in that τh remains between
2.0 and 2.4s. The range of mh values over one cycle period varies between approximately (0.14,0.53) and
(0.13,0.59) as ḡSynS increases over the interval [100,300]. The steady state activation mh,∞(V ) reduces to zero
almost entirely by V = −0.04 from its maximum near 1, occurring at the bottom of the actualized voltage
range of a burst (V ≈−0.06). The consequence of this is that mh will relax exponentially towards zero when
V >−0.04, i.e., during spiking. Thus, B and I exhibit qualitatively distinct forms of Ih dynamics.

Normalized current data for one entire I state is shown in Figure 2 in a log-scale plot. These data are
computed by normalizing all currents at time t to whichever is the greatest in magnitude, and separating the
inward and outward currents for clarity. The largest current magnitude is therefore always represented by
the value 1 (if inward) or -1 (if outward). Data for B is not shown because the normalized log2(|Ih|) at the
beginning of B is smaller than 1/8 and diverges below 1/16 after only three spikes, so that we will consider
Ih to play a minor role in this state, at most.

A subtle aspect of the mechanism of escape during I involves an interplay between the hyperpolarizing
spike-mediated synaptic input (ISynS) that activates mh and the depolarizing effect of Ih as it is increasingly
activated. As is visible in Figure 3a, the inhibited neuron is most hyperpolarized near the beginning of I when
the ISIs from the active neuron are shortest. Due to its long activation time constant, the hyperpolarization-
activated Ih does not reach its maximum until the latter part of I. At this time, the ISIs between the synaptic
input pulses have increased, and the membrane potential is depolarizing due to the resulting reduction in
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Fig. 2 Signed and normalized current magnitudes during the entire inhibited state of a single burst cycle at ḡSynS = 150, shown
in log scale as a fraction of the largest current (of either sign) at every time step. The positive scale shows inward currents, while
the negative scale shows outward currents. For clarity, only one representative spike in the spike-mediated synaptic current ISynS
is shown at the instant marked with the asterisk. Nearly identical spikes are present at every other corresponding position in the
plot, fitting in the sharp notches in the lines for the other currents, including a sole spike that does not become most dominant at
t ≈ 0.1s.

inhibition and the existing activation of Ih. Although the depolarization causes mh,∞(V ) to return towards 0,
the long time constant of mh means it does not immediately respond. Thus, Ih has an enhanced opportunity to
depolarize the cell as it transitions to B because of the reduced inhibition. Indeed, as we discuss later, if the
ISIs do not increase then the inhibited cell may never escape. Hill et al. demonstrated that the active neuron’s
ISIs must increase to a critical value in order to release the inhibited cell [14]. The primary change for Ih seen
in Figure 2 near the end of I is the reduced driving force as the membrane potential increases towards Eh.

In the same work, Hill et al. also calculated that increasing ḡh in the model decreases the average ISIs in
B [14]. In conjunction with the existence of a critical ISI for release of the inhibited neuron, this suggests that
Ih might play a minor role in setting this critical value, and therefore participate in the mechanism for release
as well as escape. Although the authors did not draw an explicit conclusion from these observations, we will
directly address that role through Hypothesis 4, which is defined in the next section.

Figure 2 indicates that IP and IL are the largest currents for most of I. IP slightly decreases over the first
0.5s and then remains almost constant in relative magnitude for the remainder of I. ICaF only appears to be
large enough to be involved in the dynamics within the final two arriving spikes of I in the transition to B.
On average, ISynG changes on a much slower time scale than action potential generation, and seems to play a
secondary role at the beginning of I until Ih becomes large. ISynS fluctuates at a fast time scale and creates the
regular punctuations in the graph as it transiently dominates all other currents when it is active. For clarity in
Figure 2, only one representative fluctuation due to a single action potential is shown. This transient effect of
ISynS on the other currents is due to the transient fluctuation in the membrane potential that it causes, which
in turn briefly affects the driving force terms of those other currents.

Ih is small at the beginning of I but becomes one of the largest currents (|Ih| ∼ |IP|/2). Broadly speaking,
Ih deactivates during B and activates during I, but its influence peaks in the middle of I, approximately ∼1s
in advance of the onset of B for the canonical parameter values. We will explore whether this is important
mechanistically, although it is already known from varying τh that the exact relative position of the peak in I
is not crucial to the mechanism of transition to B [24].
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Fig. 3 The most relevant state variables over one oscillation period for the hybrid dynamical systems model MR at the canonical
ḡSynS = 150. a) Voltage traces (V1 in black, bursting first, and V2 in green). The sudden change in V1 at t ≈ 4.5s is due to the
discrete change in vector field between I1 and I2 in neuron 1. b) mh (neuron 1 in black, unreduced neuron 2 in green), with the
four abstracted regimes labeled for neuron 1. c) Ca gating variables for neuron 1 only: mCaF (solid black line), mCaS (solid red),
hCaF (dashed black), hCaS (dashed red), and thresholds used for defining mh dynamics in Eq. (2) are shown by horizontal blue
bars.

4 Hypotheses

We now formulate hypotheses from the above observations in the context of the five functional criteria for
judging the existence and robustness of the bursting rhythm, and the control of the escape-release mechanism
that transitions the system between bursting (B) and inhibited (I) states. The hypotheses allow us to propose
answers to the general questions R1–R4 posed above, concerning the roles of Ih in the leech heartbeat HCO:

H1: Ih changes phasically over one cycle so that symmetry is maintained between the output of the two
neurons (as they must generate symmetric and opposite driving activity to motor neurons on each side of
the body).

H2: Ih is only important for the rhythm’s existence towards the middle of I.
H3: Ih must be present (but small) immediately after I for robust initialization of B.
H4: Ih must be present (but small) later in B to ensure a slower increase of ISIs and prevent premature release

of the other neuron.
H5: Ih does not need to be smoothly varying to function in the cell. While being a natural consequence

of the underlying chemical kinetics, the functional requirements of Ih in the working of the cell can be
represented using simpler terms (e.g., as a piecewise constant function).

H6: The working levels of Ih can be set according to an effectively discretized state of the system, not re-
quiring precise or continual feedback from the membrane potential. In particular, four state-dependent
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regimes are sufficient, B1, B2, I1, and I2—based on using the magnitude of calcium current to split B and
I into two parts (of non-equal duration) each.

H7: The escape-release mechanism of the cycle can be reproduced by a reduced model of the HCO that
satisfies H1–H6.

The final hypothesis, H7, is the largest in scope and builds from the previous hypotheses. It is presented more
explicitly as a hybrid dynamical system.

4.1 A reduced hybrid dynamical systems model

We will test the above hypotheses by building a form of hybrid dynamical system model used in a previous
analysis of a bursting neuron by Clewley et al. [5]. A hybrid dynamical system flexibly combines finite-state
logic for simplified components with ordinary differential equations [26]. As illustrated in Figure 1, we choose
to reduce the HCO model MR using a piecewise constant dynamic process for the dynamics of mh in neuron
1 only, and is otherwise defined in the same way as neuron 2, according to Section 2. We do not reduce both
neurons in order to more strongly test the compatibility of the reduction in the context of the original circuit.
A circuit where both neurons are reduced sustains bursting oscillations (not shown), but it is harder to be
certain that artifactual mechanisms are not introduced or original mechanisms not lost when neither neuron
possesses all the original model equations.

The above observations of temporal patterning in the current magnitudes over one cycle suggested four
regimes for the reduced Ih. Major differences in the currents between B and I in this model have previously
been identified for ICaS and ICaF [14], where they are large (small) in B (resp., I). A reduction using calcium
thresholds to separate regimes for these states of a bursting neuron model was used in [5], and a similar
approach is applicable here. For reference, the gating variables for ICaS and ICaF are shown over one cycle in
Figure 3c. Two of the distinct regimes correspond to beginning the bursting and inhibited states of the cycle,
which we will refer to as B1 and I1, respectively. The onset of B1 can be defined in several ways, but a robust
choice is the crossing from below of a high threshold (0.96) on mCaF. The onset of I1 will be defined as the
crossing from above of a lower threshold (0.5) on mCaF. The other two regimes correspond to the later parts
of B and I, which we will refer to as B2 and I2 respectively. The transition to B2 is defined by the inactivation
hCaS falling through a threshold, which we chose to be 0.2. The transition to I2 is defined by hCaF reaching a
local maximum during this state. The four transition points are indicated in Figure 3c, but their exact positions
are not crucial to the analysis that follows. We can now define the piecewise constant mh in MR as:

mh(t) =


mh,B1 when in B1,
mh,B2 when in B2,
mh,I1 when in I1,
mh,I2 when in I2.

(2)

The resulting set of states and transitions is summarized in Table 1, which will be referred to as the “template”
of the bursting rhythm’s mechanism (after [3]). As we focus on Ih only, the template does not exhaustively
list all properties of the system in each state. The depolarized and hyperpolarized state conditions on the
membrane potentials are not quantified in terms of voltage domains because there are no clear-cut voltage
thresholds in the model that uniquely separate such domains. Instead, changes in the gating variables for ICaS
and ICaF provide a more robust means to distinguish B from I. The template is an intermediate step in defining
a hybrid dynamical system model that prepares us to test hypothesis H7.

The template describes a cycle for neuron 1, and requires an assumption that neuron 2 undergoes the same
pattern of state changes (in anti-phase). Therefore, this is a recursive definition, and requires a self-consistency
argument to validate it. As such, it is valuable to explicitly test the self-consistency through a simulation of a
hybrid dynamical system. Here, we do not make use of the increasing of ISIs in B2 as a defining characteristic,
although this would be an interesting direction in which to develop the model.

The values chosen here to define MR are mh,B1 = 0.35, mh,B2 = 0.2, mh,I1 = 0, and mh,I2 = 0.55, which
roughly mimic the rise and fall of mh in MF . For these values, the HCO produced roughly symmetric anti-
phase bursts at ḡSynS = 150, a single cycle of which is shown in Figure 3 for some of the key variables. mh,I1
was set at zero instead of a value close to that seen in MF in I1 (such as 0.15) in order to better test that Ih is
only important for the rhythm’s existence towards the middle of I (hypothesis H2).
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Table 1 The template description of the escape-release mechanism hypothesis of bursting dynamics (H7) and the bursting
rhythm relative to Ih in terms of states and their allowed transitions. The template is a summary of observations in Section 3 and
hypotheses H2–H4 (Section 4) and is the basis of formally defining the hybrid dynamical system in Section 4.1. The first column
indicates the discrete states of the hybrid dynamics, B1, B2, I1, I2, each separated by a row defining the transition between
successive states. An upward (downward) arrow indicates an event threshold for the indicated gating variable for an increasing
(resp., decreasing) transition. The asterisk for B2 indicates a recursive self-consistency assumption described in the main text.

State / Trans Characterizing description Role of Ih / transition in neuron 1

B1 Depolarized V1 with regular spiking, hyperpolarized V2 For robustness only (H3)
B1→ B2 Dominance of ICaS reduces (ISIs begin to increase rapidly⇒ “release” of V2) hCaS ↓

B2 Depolarized V1 with regular spiking, hyperpolarized V2 For modulation of ISIs only (H4)
B2→ I1 V2 pro-actively begins spiking (“escape”) * mCaF ↓

I1 Hyperpolarized V1 with regular spiking in V2 None
I1→ I2 V1 becomes sufficiently polarized to de-inactivate ICaS and ICaF hCaF ↑

I2 Slowly depolarizing V1 with V2 regular spiking Causes depolarizing trend (H2)
I2→ B1 V1 begins spiking, ICaS and ICaF activate strongly mCaF ↑

4.2 Numerical methods and testing protocol

All ODEs in this study were solved using the adaptive time-step Radau integrator [13] using an absolute
tolerance of 10-8 and a relative tolerance of 10-6. This solver was accessed via an interface with PyDSTool [6],
an open source software environment developed by the author for dynamical systems modeling. It provides a
common set of compatible tools for model specification, simulation, and toolboxes for applications. PyDSTool
supports simulations with state- or time-dependent events and so can simulate hybrid dynamical systems of
the kind described above. Each threshold crossing needed for the mechanism template is defined as a zero-
crossing “event function,” detected to a tolerance of 10-4 with respect to function values. Full code used for
this work is available at http://www2.gsu.edu/~matrhc/HCO.html.

In this work, we vary the parameter ḡSynS and compare the functional metrics between stable bursting
rhythms in models MF and MR. In some test cases, we report a “failure” of the system to sustain a stable
bursting rhythm. A 60s settle time was used to allow the system to approach a stable rhythm before making
measurements. However, it was observed that a true limit cycle was not eventually approached by either model
MF or MR (discussed further in Section 6).

The canonical value of ḡSynS from the originally published model (Hill et al. [14]) is ḡSynS = 150, which
was used as the starting point for developing the reduced model MR. In line with the physiological ranges
discussed in [20], ḡSynS was varied between 50 and 300. The significance to H1–H7 of the constant values used
to define mh will be explored through an informal sensitivity analysis. The primary constant of importance for
mh in Eq. (2) was expected to be mh,I2, and is the only one that cannot be set to zero for bursting to continue
over the range of ḡSynS under the conditions tested below. In fact, when mh,B1 = mh,B2 = mh,I1 = 0, bursting
typically occurs in the network as ḡSynS is varied. As a result, these mh parameters will henceforth be referred
to as “secondary.”

5 Results

5.1 Period, phase symmetry, and duty cycle

The period, phase symmetry, and duty cycle are fundamental measures of the temporal properties of a half-
center oscillator’s rhythm. We define the cycle period as Tav = (T1 +T2)/2, where T1 (T2) is the difference
between two successive burst onsets in neuron 1 (resp., 2). The phase symmetry in a cycle was measured by
the difference in the timing of onsets to B in each cell, normalized by Tav. Thus, a value of 0.5 indicates perfect
symmetry between the onset of B in each cell as well as equal periods in their oscillation. The duty cycle was
measured for neuron 1 as the proportion of the period T1 spent in the bursting state.

Figure 4 compares these metrics for HCO cycles between models MF and MR at the canonical parameters
of Hill et al. [14], as a function of ḡSynS. The trend in period is similar and the phase symmetry for MR is, on
average, within 2% of that for MF . The duty cycles are similar in magnitude but are consistently lower for
MF by no more than 2%. These results support H1, H5 and H6, as both the reduced and unreduced neurons
behaved similarly when coupled together.
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5.1.1 Sensitivity analysis of mh

If all values are set equal in Eq. (2) so that mh ≡ 0.45, the trend in period is correct for ḡSynS ≤ 225 but offset
by approximately +1s, while at larger ḡSynS neuron 1 remains disproportionately longer in B such that the
period increases greatly. The phase symmetry decreases from 0.48 at ḡSynS = 100 monotonically towards 0.1
as ḡSynS → 300, also reflecting that neuron 1’s bursting state becomes much longer than that of its partner.
The duty cycle increased almost linearly up to 0.85 as a function of ḡSynS. (The functional consequence would
be skewed timing and duration in the activation of motor neurons driven from this CPG circuit.) A bursting
rhythm did not exist at ḡSynS = 300 for these settings. These tests support hypothesis H1, that phasic changes
in Ih are necessary for correct and symmetric activity. These results are also consistent with H5 and H6, as
both the reduced and unreduced neurons behaved similarly when coupled together.

When mh ≡ 0.45, the maximum hyperpolarization of V1 is much lower. This is due to the continued
presence of Ih in I1 at a level much greater than is observed in Figure 2 over the first 1s. Consequently, the
voltage-dependent de-inactivations of ICaS and ICaF are lessened.

Setting the secondary values mh,B1 = mh,B2 = 0 changed the period by less than 0.1s at each ḡSynS, except
that stable rhythms failed to exist for 3 of the 11 ḡSynS values tested. This alteration made no average change
to the phase symmetry, and reduced the duty cycles to a value 0.5±0.2 for all ḡSynS values except 50. These
results are consistent with H2, in that Ih is less important during B. They also support H3 and H4, in that the
presence of small amounts of Ih in B helps to maintain a robust rhythm. In every case of failure, neuron 1 enters
B and fires one (sometimes two) action potential spikes. At this point, well-timed inhibitory spikes originating
from the overlap with neuron 2 at the end of its bursting state lead to an immediate suppression of V1 from
further spiking in this cycle. Subsequently, neuron 1 returns to a state of low ICaS+ICaF, which had not yet fully
activated. This situation is shown in Figure 5 for a failure at ḡSynS = 150, where it is compared to the robust
dynamics at the canonical parameters. Recall that the highest level of mCaS de-inactivation is not reached until
about 3 spikes into B on a normal cycle (Figure 3c). Thus, even though the cell is already depolarized enough
to be spiking, the spiking state is fragile until ICaS increases to its full level. In the meantime, this test reveals
that if mh activation is present early in B, it allows the cell to recruit Ih in response to inhibition during the
overlap of B and I in the two neurons. Here, recruitment means that the hyperpolarizing effect of the inhibition
from the other neuron increases the magnitude of the driving force in Ih, namely V1−Eh, thereby generating
a depolarizing, restorative effect on the B state without involving a significant change in mh itself.

When only mh,B2 = 0 was changed from the default values, there were no failures in stable rhythm gen-
eration at the 11 ḡSynS values tested. From these tests we conclude that the failures all involved the inhibited
neuron failing to escape, and thus B was not robustly initialized in the absence of Ih. This supports H3, that Ih
is necessary to provide this robustness in B1. While the metrics showed no significant change for ḡSynS ≤ 175,
all showed close quantitative matching of the fluctuations in MF for larger ḡSynS. This suggests that the re-
duced model for Ih would require greater refinement to explore a detailed quantitative comparison with MF .
When mh,I1 was increased from 0 to 0.2 the only significant change in these metrics was a small improvement
in the agreement of period between MF and MR at ḡSynS ≥ 175.

5.2 Inter-spike intervals

Hill et al. describe how ISIs during a burst must increase to a critical value to release the other neuron from
a suppressed state [14]. Here, we study the role of the different temporal components of Ih on ISIs in relation
to this part of the rhythm’s mechanism.

Figure 6 shows three representative sets of inter-spike intervals (ISIs) during the bursting state, as a func-
tion of spike number. In all cases, the last ISI of the burst was ∼0.22s. The number of spikes are similar
between models MF and MR, and the match in both value and slope is close except for a small step up in
the values for MF around spikes 12–20. These steps are due to the abrupt change in mh between B1 and B2.
Although quantitatively small, the difference in slope between MF and MR indicates a greater modulatory
effect of Ih on inter-spike timing during B than was assumed from the normalized current magnitude values.
Overall, these results support H1, H5 and H6, as both the reduced and unreduced neurons behaved similarly
when coupled together. The exact number of spikes per burst occasionally varies by ±1 on some cycles, due
to the weakly chaotic nature of the attractor (see Discussion).



10 Robert Clewley

Pe
rio

d 
(s

)
Sy

m
m

et
ry

, d
ut

y 
cy

cl
e

Maximal synaptic conductance, gSynS

Fig. 4 Period, phase symmetry, and duty cycle metrics as a function of ḡSynS. Solid lines: model MR. Dashed lines: model MF .
In the lower panel, phase symmetry is shown in black with oval markers, and duty cycle is shown in red with square markers.
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Fig. 5 Sensitivity to well-timed synaptic inputs at the end of the inhibited state. When mh,B1 = mh,B2 = 0, ḡSynS = 150 in model
MR, the (reduced) neuron 1 enters the B1 regime just before the first voltage spike (V1 in black) as a result of mh,B1 = 0. The
solid lines show that V1 is suppressed after interacting with the final spike of the bursting state in neuron 2 (V2 in green). For
comparison, the successful continuation of B for V1 when mh,B2 = 0.2 and mh,B1 = 0.35 (their default values) is shown by the
dashed lines.

5.2.1 Sensitivity analysis of mh

Setting the secondary values mh,B1 = mh,B2 = 0 led to ISIs with the same increasing trend but a constant offset
of between +0.01 and +0.02s for all ḡSynS values tested, with a greater discrepancy as spike numbers increase.
This discrepancy increased the overall number of spikes per burst by up to 5. When only mh,B2 = 0 the initial
ISIs closely matched those shown in Figure 6, but after spike 20 the steeper upward trend persisted. The largest
ISIs in these tests were all∼0.22s. These results are consistent with H2, in that the fit between the ISIs of MR
and MF is mostly due to the primary value mh,I2. The results also support H4, that the decline of Ih during B
plays a role in controlling the increase of ISIs. As noted above, setting mh ≡ 0.45 led to longer bursting states
in the reduced neuron with a smaller increase in ISI. In particular, for ḡSynS < 250 the maximum ISI was no
more than 0.03s smaller than that shown in Figure 6, but for larger ḡSynS neuron 1 entered a tonic spiking
mode with constant ISIs sufficiently small to keep neuron 2 suppressed indefinitely. These results support the
suggestion by Hill et al. that ISIs in neuron 2 must increase to a critical value (∼0.22s) in order to first release
neuron 1 so that it may escape [14].
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Fig. 6 Inter-spike intervals (ISIs) during the bursting state as a function of spike number within a burst, compared between
models MF (dashed lines) and MR (solid lines). a) ḡSynS = 100, b) ḡSynS = 200, c) ḡSynS = 300.

5.3 Response to perturbations

Under typical circumstances, a CPG should continue to function robustly in spite of mild perturbations to its
state. “Perturbations” may arise in the form of small, noisy changes in synaptic timing or efficacy, or similar
temporal variations in other parameters or state variables. In this section we consider the phasic dependence of
this CPG to small perturbations in voltage only, and how this changes as we adjust the reduced representation
of Ih in MR. Our aim is to determine whether Ih has a role in creating robustness by measuring the similarity
in phase response between MF and MR.

We consider the phase response of the circuit to weak current-pulse perturbations Iapplied(t) applied to
neuron 1, measured using the direct form of phase response curve (PRC) defined in [11]. The pulses were
applied at spike-triggered times along the burst cycle, with a duration of 0.3s that is longer than any ISI
within a burst. This minimizes artifactual differences between the models that arise from a sensitivity in
response to the perturbation’s precise timing relative to spikes [23]. Phase positions ϕ were selected at the
next closest spike time to all spikes from the bursting state of neuron 1 when it was in B, otherwise from
neuron 2 (making a total of 64–74 perturbations). Spike times were detected accurately during simulation
using a voltage threshold of -0.02V.

The step pulse had amplitude 0.015pA, while its sign was negative (positive) for excitatory (resp., in-
hibitory) stimulation. The chosen amplitude was small enough so that inhibition at the canonical parameter
values would not elicit catastrophic failure of B (transitioning to I) and excitation would not elicit immediate
entry to B from I. (This would require additional transition rules in the mechanism template, e.g. for B1→ I1,
and is beyond the scope of this work.) Thus, these perturbations are much weaker than those naturally made
through synaptic coupling between the two neurons (as discussed in Section 5.1.1). The phase difference ∆ϕ

on the next cycle (hereon denoted 1o PRC) and the subsequent cycle (2o PRC) in comparison to an unper-
turbed cycle was determined in the following way. The next onsets to B were measured accurately using burst
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onset events in the simulations, and the difference between successive times to begin B were divided by the
unperturbed cycle period. ∆ϕ < 0 (> 0) indicates a delay (resp., advance) in the start of the next cycle.

Figs. 7–9 show three representative sets of data as ḡSynS was varied for MR. B1 begins at ϕ = 0, and
the other transition phases of the other hybrid model are marked by small rectangles in the bottom panels of
the figures. The PRCs indicate little sensitivity of the CPG for most phases except for ϕ in the ranges from
0.35–0.45 and 0.8–1.0, corresponding to the latter parts of the bursting or inhibited states. At most phases
there is qualitative similarity in the responses of models MF and MR for all values of ḡSynS, although MR
shows a much smoother response as ϕ varies. Particular local trends common to both models are indicated by
red arrows in the figures. Generally, these results support H1, H5 and H6, as both the reduced and unreduced
neurons responded similarly.

Although the stimulus occurs over a duration longer than any one ISI and averages some effects of the
discrete step change in mh between regimes in MR, there remains a marked accentuation in the primary phase
responses of MR for ϕ in the range from 0.35–0.45 for inhibitory perturbations and ϕ > 0.8 for excitatory
perturbations. This includes some sign errors in the 1o excitatory PRC of MR compared to that of MF ,
although these are largely mitigated by the beginning of the second cycle (shown by the comparison of 2o

PRCs).
The discrepancy in 1o PRCs decreases with increasing ḡSynS, suggesting that synaptic inhibition can mask

artifacts introduced in the process of reduction to MR. The decrease in discrepancy was measured by compar-
ing local minima or maxima in the 1o PRCs in the aforementioned ranges of ϕ . In the case of the excitatory
PRCs, the local minima for ϕ > 0.8 were measured. As ḡSynS increased from 100, through 200, to 300, the
difference in these local minima changed from 0.056, through 0.046, to 0.032, respectively. For the inhibitory
PRCs, the sizes of the local minima immediately prior to the local maxima at ϕ ≈ 0.4, and the sizes of those
local maxima, were both compared. For the same three ḡSynS values in increasing order, the difference in
the minimum and maximum positions given as pairs were (0.023, 0.049), (0.021, 0.044), and (0.001, 0.031),
respectively.

A surprising observation from Figs. 7–9 is that there can be similar phase response effects in both models
from both excitation and inhibition around certain phases, such as ϕ ≈ 0.4 in both models and ϕ ≈ 0.9 in
MF . A preliminary examination of the number of spikes in the bursts of each neuron immediately following
the perturbation provides some insight as to the reason. The 1o PRC measures the proportional change in
the perturbed cycle’s duration compared to the unperturbed cycle. For this HCO, the increasing ISIs follow a
typical pattern (Fig. 6), and so we expect a coarse correspondence between the temporal duration of the cycle
and the total number of spikes per burst in the two neurons before the cycle repeats. Also, within the cycle
including the perturbation, a change in the number of spikes per burst in each neuron of the pair provides
more detailed temporal information about the circuit’s response than the PRC.

For instance, we consider ḡSynS = 200 and ϕ = 0.4, for which the unperturbed number of spikes per burst is
33. For the 1o excitatory PRC, the number of spikes in the perturbed burst of neuron 1 was 35, and the number
for the next burst of neuron 2 was 37. This is a total change of +6, resulting in ∆ϕ ≈ 0.02. For inhibition,
the number of spikes in the corresponding bursts were 30 and 51, respectively, giving a total change of +15,
resulting in ∆ϕ ≈ 0.04. Thus, in both cases the immediate response was intuitive: excitation led to a longer B
while inhibition made it shorter. But in both cases there appears to be a longer-term compensatory mechanism
that leads to a longer I after B is either shortened or lengthened, sufficient to create a longer overall cycle.

Similarly counter-intuitive phase-dependent effects of excitation and inhibition have been observed in
isolated bursting neurons by Sherwood and Guckenheimer [23], which were analyzed using geometrical ar-
guments based on a fast-slow decomposition [21]. In order to minimize such effects here, the phases at which
perturbations were applied were chosen to correspond to the beginning of a spike. Nonetheless, ISIs increase
during B so that the time at which a perturbation ends relative to a later spike is not consistent. Thus, the sit-
uation may be similar to that in [23], in that it involves small changes in perturbations relative to spike times,
which alter the number of spikes during B, and hence cause a potentially large change in the duration of B
(see Fig. 5 for a similar example). A full analysis of this situation would involve details of the fast sub-system
for spike generation in addition to the longer-term compensatory effects in the other neuron. The time scale
of spikes is faster than those considered in the present reduction, which does not isolate the spiking dynamics,
and is beyond the scope of this work.

Additionally, the smoother response of MR suggests that the detailed temporal dynamics of mh activation
contributes to the small fluctuations in ∆ϕ through small changes in the number of spikes per burst. From a
quantitative perspective this may challenge the assumption that smoothness of Ih is unnecessary (H5), but the
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Fig. 7 Comparison of 1o and 2o excitatory (ePRC) and inhibitory (iPRC) phase response curves between models MF (blue
voltage traces and PRCs) and MR (black voltage traces and PRCs) for ḡSynS = 100, as a function of the phase of step-pulse
perturbation. All perturbation phases are spike-triggered (see main text for details). For reference, the top panel shows voltage
traces for one full cycle of each neuron in the HCO of MF , and the bottom panel shows one full cycle for MR (V2 is always
in green, bursting after neuron 1). V1 always corresponds to the perturbed neuron, V2 to the unperturbed neuron. Rectangular
markers in the bottom panel indicate transition times between regimes for MR. Red arrows indicate positions of qualitatively
similar trends in the responses. Secondary PRCs for MR are shown with longer dashes, and both PRC traces for MR are marked
with an asterisk in a region where they are close to each other.

broader functional consequence of such a fine-grained and weak difference is unclear, and should be tested
against more sophisticated metrics.

5.3.1 Sensitivity analysis of mh

When the secondary values mh,B1 and mh,B2 were set to zero there were no differences in either the excitatory
or inhibitory PRCs for ḡSynS = 100, 200, or 300 above the background level of fluctuation (±0.02) seen in
Figs. 7–9 for MF . Recall that in Section 5.1 we found that in this situation rhythms failed to exist for 3 of the
11 ḡSynS values tested. However, as for those metrics, when the rhythms do exist, the lack of sensitivity we
find for the PRCs here suggests no role for Ih in the robustness of rhythms to weak perturbations during B1 or
B2. Increasing mh,I1 from zero made no significant change to any of the PRCs.

The accentuated responses for ϕ ≈ 0.4 in MR involve neuron 1 receiving a perturbation during B2. Thus
mh,B2 was varied individually to explore whether modulation of Ih specifically around the time of perturbation
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Fig. 8 Comparison of 1o and 2o excitatory and inhibitory PRCs between models MF and MR for ḡSynS = 200. See legend for
Figure 7.

could control the discrepancy in the phase responses. In particular, an increase in mh,B2 could be expected to
decrease the ISIs during B2 and ensure greater domination of the bursting state by spiking currents so that
perturbations would have less effect. However, setting mh,B2 to either 0.35 or 0 from the default value of 0.2
made no significant difference to the PRCs above the background level of fluctuation.

The accentuated responses for ϕ > 0.8 in MR involve neuron 1 receiving a perturbation during I2. Thus
mh,I2 was varied individually to explore this effect. Decreasing this value to 0.45 further accentuated the
response by 2% for all ḡSynS values in the excitatory PRC (and also further accentuated the response at
ϕ ≈ 0.45 in the inhibitory PRC). At ḡSynS = 300 an additional effect was a greater separation between the 1o

and 2o PRCs of∼ 0.025. On the other hand, when mh,I2 was increased to 0.6 (which is close to the peak value
for mh for MF at ḡSynS = 300), the only significant change was uniformly greater separation between all the
1o and 2o PRCs by ∼ 0.01.

We can conclude that the results of all the perturbation tests do not invalidate the hypotheses H1–H4
concerning the phasic nature of Ih, and that the PRC metric succeeds in demonstrating an important functional
similarity of model MR with MF . In addition, the results of the sensitivity tests lead us to conclude that there
is no direct role of Ih at the time of perturbations arriving at the end of either B or I. Instead, we may expect a
delayed connection between such perturbations and the dynamics that alter the next cycle’s phase. In addition,
the similarity between effects of excitation and inhibition at the end of B or I can be conjectured to involve
different compensatory mechanisms between the coupled neurons that take place over an entire cycle period.
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Fig. 9 Comparison of 1o and 2o excitatory and inhibitory PRCs between models MF and MR for ḡSynS = 300. See legend for
Figure 7.

6 Discussion

In this work we formulated and tested simple hypotheses that elucidate the detailed role of the hyperpolariz-
ation-activated current Ih in creating functionally robust rhythms in a central pattern generator (CPG) model of
the leech heartbeat. This model uses a half-center oscillator (HCO) architecture of two inhibitory interneurons.
Previous investigations of this CPG through modeling studies (e.g., [14]) and experimental studies (e.g., [24])
have yielded possible mechanisms involving Ih in broad natural language terms. Here, our primary goal was
to take advantage of an existing model and previous studies of its properties as an expository case study: we
seek to validate the previous natural language descriptions through a more formal approach, and improve upon
their clarity, robustness, and specificity. A secondary goal was to gain some fresh insights into the mechanisms
involving Ih that were previously opaque.

6.1 Insight into the escape-release mechanism

To achieve our primary goal, we demonstrated a computational protocol for the hypothesis-driven testing of
a formal description of the role of Ih in an “escape-release” mechanism. This used a reduction to a hybrid
dynamical systems model. The tests were made with respect to five metrics that quantify essential aspects of
rhythmic behavior, including the novel consideration of phase response of this circuit to mild perturbations.
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These simple metrics are the most commonly used ones that relate to the functional properties of a CPG in
an intact animal. Unfortunately, the precise connection between the metrics and broader functional properties
are not yet well understood. Nonetheless, modification of some or all of the temporal properties measured by
these metrics in an intact nervous system is a likely means of adapting and tuning rhythmic behavior. The
resulting comparisons of our reduced and full models of the CPG were successful, and in the process we
found results fully consistent with the conclusions of the previous studies, as well as new details and insights
to the role of Ih. The new results are now discussed.

We established that only a transient step pulse of Ih is necessary during the inhibited state of a cycle to
create a sustained bursting rhythm in the CPG and to dominate control of the cycle period. Only the broad
timing of this pulse relative to the cycle phase is essential in this role, and not detailed temporal dynamics
involving smooth activation and deactivation. We also established that the lower, “secondary” values of Ih
present during its slow activation and deactivation elsewhere in the cycle do contribute some robustness to the
rhythm. For instance, a residual amount of Ih appears to compensate for the incomplete activation of ICaS at
the beginning of bursting. This is helpful in providing robustness to the strong perturbations occurring when
the bursting and inhibited states of the two neurons overlap.

The weak presence of Ih during the bursting state was shown to have an effect in modifying cycle period
and spike-timing properties, although removing it in the later part of this state actually improved the fit of
period, phase symmetry, and duty cycle to the full model.

Lastly, a stronger sensitivity of the phase response of the system to perturbations near the end of both the
bursting and inhibited states was observed in both the full and reduced models. A surprisingly similar phase
response from excitation and inhibition at some phases was also noted. The correspondence of these effects
between the full and reduced models suggests that their functional significance could be investigated in future
work using a reduced model of this kind along with additional metrics, such as the number of spikes per burst.
Such an investigation is expected to require additional reductions at the fast time scale of spike generation
to explore the interaction between disparate time scales. Both phase response effects could, for instance, be
important for the correct modification of segmental phase by neighboring rhythmic segments in the ganglion
under certain behavioral conditions.

In line with both the previous modeling studies of this CPG and more general analyses of asymmetric
parameter changes in CPG circuits (e.g., by Daun et al. [9]), we find that changes in the parameters of one
neuron affect the metrics for both neurons in a way that depends on the transition mechanism between the
inhibited and bursting states of the collective rhythm. The escape-release mechanism discussed here is closest
to the “neuronal adaptation” mechanism of transition discussed by Daun et al. in terms of globally-reduced
phase-plane oscillator models [9].

On a technical note, it has been observed that the “regular” rhythms computed numerically for the original
HCO model are close to limit cycles but do not appear to fully converge [8]. There is a lack of continued
damping of variability in the period, ISIs, etc. of cycles as very long simulations are run, after an initial
rapid damping from most initial conditions (within a few cycles). This occurs even at the highest integration
tolerances and tightest step size control that resources allow, and suggests that the system may have a weakly
chaotic attractor. The metrics computed for the model showed slight variability to the exact amount of settle
time used to prepare the system, but the qualitative results and conclusions drawn are not sensitive to this.
A mathematical study of the escape-release mechanism in its reduced form may elucidate the presence and
nature of weak chaos in the model, and could be used to guide an optimization of parameters or equation
structure in the dynamical system to seek a nearby regime in which the rhythmic solutions to the differential
equations are limit cycles.

Although we only considered reducing a single current of one neuron’s equations in one possible manner,
our simple case study already demonstrates the value of our approach for future studies of complex neural dy-
namics. The process of analyzing dominant scales and reducing more of the current equations in similar ways
can lead to substantially lower-dimensional representations of bursting dynamics [5]. Hybrid model reduc-
tions of five of the most dominant currents in the leech heartbeat HCO model are in progress, and preliminary
results show stable and symmetric bursting oscillations when the reduced neuron is paired with an unreduced
neuron. These reductions will permit testing of more sophisticated and fine-grained hypotheses about the
relative roles of different currents in establishing and maintaining a bursting rhythm. However, rigorous com-
putational protocols that test hypotheses involving many simultaneous reductions would be combinatorily
complex, enough to require computer-aided management tools.

Our analysis protocol pinpointed where and how to further test the hypotheses, including how to intro-
duce reasoning about additional currents and mechanisms. For example, the most important feedback loops
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between the neurons in the escape-release mechanism occur at the end of the bursting and inhibited states
of the two neurons, and are hypothesized to involve: (1) increases in ISI in the bursting neuron 2 (largely
connected to inactivation of ICaS but with a modulatory role for Ih suggested by Section 5.2.1), and (2) the
activation of ICaS and ICaF as the inhibited state transitions to the bursting state in neuron 1, with a secondary
role for a residual amount of Ih (Section 5.1.1). A functionally-driven reduction of all currents involved in this
feedback could be expected to allow meaningful quantification of the degree to which release plays a role in
comparison to escape. It may also facilitate phase plane and bifurcation analysis of the hybrid dynamics for
these feedback loops, for instance along the lines of [2,3,5,7,9].

6.2 Towards formal, hypothesis-driven modeling

The formalized description of the escape-release mechanism took the form of a “template” that categorizes
gross functional states of the system and indicates characteristic transitions between them [3]. A template
is more explicit about its assumptions than a natural language description, and provides a clearer means to
distinguish causal connections from correlations in the changing activity between the model’s components.
In particular, it increases analytical access to the effectively low-dimensional, transient regimes hypothesized
from the full dynamics. We showed how a template can be represented as a hybrid dynamical system that en-
codes the causal hypotheses. The simulation of such a system directly tested that it is logically self-consistent
and enables quantification of its success in mimicking the full model. Thus, we conclude that hypotheses
H1–H6 could not be rejected by the tests presented here, so that H7 is supported: namely, the escape-release
mechanism can be reproduced by the hybrid dynamical model, up to the resolution provided by our metrics.

This work argues that formalizing a mechanistic description in this way can increase its predictive power
and facilitate greater parsimony, leading to a more precise understanding of biological function. This is im-
portant as the goals of large-scale, detailed computational modeling in neuroscience become more ambitious
[15,17] at a rate that currently dwarfs the scope of mathematically-based theoretical tools. At present, large
models are simulated with limited understanding of the roles that the thousands of parameters and connections
play in the essential dynamic mechanisms underlying the observable properties of the system. Furthermore,
some of these mechanisms may remain unidentified during simulation, and clear criteria for measuring the
functional success of a large-scale model are extremely challenging to establish. A new generation of inte-
grated informatic tools must tackle this situation and provide an explicit basis for judging when elements of
model activity are (for example) biologically necessary, plausible, or artifactual. Such tools have not yet been
synthesized, but in principle are within the reach of modern computer hardware, simulation tools, database
tools, and qualitative reasoning algorithms. The present work demonstrates a prototypical technique in the
spirit of envisioning how future informatic tools might work.
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